
W4. Linked lists

You are given the following definition of the ​Island ​datatype:
typedef struct island {

 char * name;

 int population;

} Island;

1.​ ​Write the program that defines 3 islands:
Island one = {"Happy",1000};

Island two = {"Empty",0};

Island three = {"Dense",1000000};

How would you represent a tour ​one → two → three​ using an array?

2.​ ​Now we have one more island:
Island four = {"Sad", 1, NULL};

And we want to change our tour to ​one → two → ​four​ → three​.

How easy it is to dynamically insert a new island in the middle of an array? What data structure
would you use instead? What should we add to the definition of Island?

Implement the original tour ​one → two → three​ using this new data structure, and insert island
four​ after island ​two​.

3.​ ​Implement function ​print_tour​ which accepts the head of the linked list as a parameter,
and prints all islands in the tour.

Submit the code in file islands1.c

 ===
4.​ ​We want to be able to build our tour ​dynamically​, by reading island information from ​stdin​.
We will use function ​fgets​ to read each island name entered from the standard input.

Simplify ​Island ​definition. Now each island only stores the name and the pointer to the next,
copy and update your ​print_tour​ function to a new file ​islands2.c​.
typedef struct island {

 char * name;

 struct island * next;

} Island;

Write code for reading island names from ​stdin​ using ​fgets​ and print them to ​stdout​. The
program reads lines until user types “q”.

When you run your code what do you notice about ​fgets​? Does it include end-of-line
characters?

Fix this problem by inserting ‘\0’ instead of end-of-line characters:
buffer [strcspn (buffer, "\r\n")] = '\0';

5.​ ​Read island names from ​stdin​, and dynamically add new islands to the tour. After user
enters “q”, print islands using the ​print_tour​ function implemented in step 3.

 6.​ ​Compile your program into executable ​islands​ ​with debugging flag -g​:
gcc -g -Wall -std=c99 islands.c -o islands
Now test your program for memory leaks with ​valgrind​:
valgrind --leak-check=full --show-leak-kinds=all --track-origins=yes ./islands

Is the number of ​mallocs​ equal to number of ​frees​?

7.​ ​Implement function​ ​free_islands​ which will free all dynamically allocated list nodes. Call
this function before the end of the program.

8.​ ​Run ​valgrind​ again. Does it still complain?
Replace all calls to ​malloc​ with ​calloc​, and run valgrind again. This should produce the following
reassuring message:
==6627== All heap blocks were freed -- no leaks are possible
==6627== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

Submit the final code in file islands2.c

